9,241 research outputs found

    RADIS: Remote Attestation of Distributed IoT Services

    Get PDF
    Remote attestation is a security technique through which a remote trusted party (i.e., Verifier) checks the trustworthiness of a potentially untrusted device (i.e., Prover). In the Internet of Things (IoT) systems, the existing remote attestation protocols propose various approaches to detect the modified software and physical tampering attacks. However, in an interoperable IoT system, in which IoT devices interact autonomously among themselves, an additional problem arises: a compromised IoT service can influence the genuine operation of other invoked service, without changing the software of the latter. In this paper, we propose a protocol for Remote Attestation of Distributed IoT Services (RADIS), which verifies the trustworthiness of distributed IoT services. Instead of attesting the complete memory content of the entire interoperable IoT devices, RADIS attests only the services involved in performing a certain functionality. RADIS relies on a control-flow attestation technique to detect IoT services that perform an unexpected operation due to their interactions with a malicious remote service. Our experiments show the effectiveness of our protocol in validating the integrity status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table

    Averaging of equations of viscoelasticity with singularly oscillating external forces

    Full text link
    Given ρ∈[0,1]\rho\in[0,1], we consider for Δ∈(0,1]\varepsilon\in(0,1] the nonautonomous viscoelastic equation with a singularly oscillating external force ∂ttu−Îș(0)Δu−∫0∞Îșâ€Č(s)Δu(t−s)ds+f(u)=g0(t)+Δ−ρg1(t/Δ) \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t)+\varepsilon ^{-\rho }g_{1}(t/\varepsilon ) together with the {\it averaged} equation ∂ttu−Îș(0)Δu−∫0∞Îșâ€Č(s)Δu(t−s)ds+f(u)=g0(t). \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t). Under suitable assumptions on the nonlinearity and on the external force, the related solution processes SΔ(t,τ)S_\varepsilon(t,\tau) acting on the natural weak energy space H{\mathcal H} are shown to possess uniform attractors AΔ{\mathcal A}^\varepsilon. Within the further assumption ρ<1\rho<1, the family AΔ{\mathcal A}^\varepsilon turns out to be bounded in H{\mathcal H}, uniformly with respect to Δ∈[0,1]\varepsilon\in[0,1]. The convergence of the attractors AΔ{\mathcal A}^\varepsilon to the attractor A0{\mathcal A}^0 of the averaged equation as Δ→0\varepsilon\to 0 is also established

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Measurement of scaling laws for shock waves in thermal nonlocal media

    Full text link
    We are able to detect the details of spatial optical collisionless wave-breaking through the high aperture imaging of a beam suffering shock in a fluorescent nonlinear nonlocal thermal medium. This allows us to directly measure how nonlocality and nonlinearity affect the point of shock formation and compare results with numerical simulations.Comment: 4 pages, 4 figure

    Tunneling into fractional quantum Hall liquids

    Full text link
    Motivated by the recent experiment by Grayson et.al., we investigate a non-ohmic current-voltage characteristics for the tunneling into fractional quantum Hall liquids. We give a possible explanation for the experiment in terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction between the charge and neutral modes, and found that the leading order correction to the exponent α\alpha (I∌Vα)(I\sim V^\alpha) is of the order of Ï”\sqrt{\epsilon} (Ï”=vn/vc)(\epsilon=v_n/v_c), which reduces the exponent α\alpha. We suggest that it could explain the systematic discrepancy between the observed exponents and the exact α=1/Îœ\alpha =1/\nu dependence.Comment: Latex, 5 page

    Continuum elasticity theory of edge excitations in a two-dimensional electron liquid with finite range interactions

    Get PDF
    We make use of continuum elasticity theory to investigate the collective modes that propagate along the edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of motion is obtained with the following simplifying assumptions: (i) The system is {\it macroscopically} homogeneous and isotropic in the half-plane delimited by the edge (ii) The electron-electron interaction is of finite range due to screening by external electrodes (iii) The system is nearly incompressible. At sufficiently small wave vector qq we find a universal dispersion curve ω∌q\omega \sim q independent of the shear modulus. At larger wave vectors the dispersion can change its form in a manner dependent on the comparison of various length scales. We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.Comment: 3 figure

    Shock waves in disordered media

    Full text link
    We experimentally investigate the interplay between spatial shock waves and the degree of disorder during nonlinear optical propagation in a thermal defocusing medium. We characterize the way the shock point is affected by the amount of disorder and scales with wave amplitude. Evidence for the existence of a phase diagram in terms of nonlinearity and amount of randomness is reported. The results are in quantitative agreement with a theoretical approach based on the hydrodynamic approximation.Comment: 4 pages, 5 figure

    Phase diagram and complexity of mode-locked lasers: from order to disorder

    Full text link
    We investigate mode-locking processes in lasers displaying a variable degree of structural randomness, from standard optical cavities to multiple-scattering media. By employing methods mutuated from spin-glass theory, we analyze the mean-field Hamiltonian and derive a phase-diagram in terms of the pumping rate and the degree of disorder. Three phases are found: i) paramagnetic, corresponding to a noisy continuous wave emission, ii) ferromagnetic, that describes the standard passive mode-locking, and iii) the spin-glass in which the phases of the electromagnetic field are frozen in a exponentially large number of configurations. The way the mode-locking threshold is affected by the amount of disorder is quantified. The results are also relevant for other physical systems displaying a random Hamiltonian, like Bose-Einstein condensates and nonlinear optical beams.Comment: 4 pages, 2 figure
    • 

    corecore